Manipulation of miRNA activity accelerates osteogenic differentiation of hMSCs in engineered 3D scaffolds
نویسندگان
چکیده
Cell-based tissue engineering strategies have shown tremendous promise for the repair of bone mass deficiencies, but the efficient and appropriate induction of stem cells down osteogenic pathways remains a significant roadblock to the effective implementation of cell-based therapies. When grown in culture, human Mesenchymal Stromal/Stem Cells (hMSCs) remain multipotent, requiring specific exogenous signals to induce osteogenic differentiation. hMSCs used in transplantations, therefore, must be presented with local signals, often provided by the host's own tissues, to be directed down bone-related lineages. This process is relatively inefficient and remains difficult to control. In an effort to enhance osteogenesis, hMSCs were transfected with specific miRNA mimics and inhibitors that had originally identified for their ability to increase Alkaline Phosphatase (ALP) activity. Transfection with miRNA reagents had the effect of sensitizing hMSCs to soluble osteogenic factors, resulting in a rapid and robust induction of bone-related markers, including ALP activity and calcium deposition. Synthetic 3D tissue constructs prepared with miRNA-transfected hMSCs demonstrated similar responses to soluble osteogenic signals, suggesting that controlling miRNA activity in hMSCs can be an effective tool for enhancing the induction of osteogenesis for tissue engineering purposes.
منابع مشابه
Cell type–specific extracellular matrix guided the differentiation of human mesenchymal stem cells in 3D polymeric scaffolds
The tissue microenvironment has profound effects on tissue-specific regeneration. The 3-dimensional extracellular matrix (ECM) niche influences the linage-specific differentiation of stem cells in tissue. To understand how ECM guides tissue-specific regeneration, we established a series of 3D composite scaffolds containing ECMs derived from different primary cells isolated from a single animal ...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملNanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
Musculoskeletal tissue engineering aims at repairing and regenerating damaged tissues using biological tissue substitutes. One approach to achieve this aim is to develop osteoconductive scaffolds that facilitate the formation of functional bone tissue. We have fabricated nanoclay-enriched electrospun poly(ɛ-caprolactone) (PCL) scaffolds for osteogenic differentiation of human mesenchymal stem c...
متن کاملPreparation and investigation of polylactic acid, calcium carbonate and polyvinylalcohol nanofibrous scaffolds for osteogenic differentiation of mesenchymal stem cells
Objective(s): In this study, the effect of electrospun fiber orientation on proliferation and differentiation of mesenchymal stem cells (MSCs) was evaluated. Materials and Methods: Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polylactic acid (PLA), poly (vinyl alcohol) (PVA) and calcium carbonate nanoparticles (nCaP). The surface morphology of prepared nanofibrou...
متن کاملOsteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor
Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012